Interactions between Thyroid and Kidney Function in Pathological Conditions of These Organ Systems: A Review

Van Hoek I. and Daminet S.

General and Comparative Endocrinology, 2009. 160(3): p.205-215.


Thyroidal status affects kidney function already in the embryonic stage. Thyroid hormones influence general tissue growth as well as tubular functions, electrolyte handling and neural input. Hyper- and hypo-functioning of the thyroid influences mature kidney function indirectly by affecting the cardiovascular system and the renal blood flow, and directly by affecting glomerular filtration, electrolyte pumps, the secretory and absorptive capacity of the tubuli, and the structure of the kidney. Hyperthyroidism accelerates several physiologic processes, a fact which is reflected in the decreased systemic vascular resistance, increased cardiac output (CO), increased renal blood flow (RBF), hypertrophic and hyperplastic tubuli, and increased glomerular filtration rate (GFR). Renal failure can progress due to glomerulosclerosis, proteinuria and oxidative stress. Hypothyroidism has a more negative influence on kidney function. Peripheral vascular resistance is increased with intrarenal vasoconstriction, and CO is decreased, causing decreased RBF. The influence on the different tubular functions is modest, although the transport capacity is below normal. The GFR is decreased up to 40% in hypothyroid humans. Despite the negative influences on glomerular and tubular kidney function, a hypothyroid state has been described as beneficial in kidney disease. Kidney disease is associated with decreased thyroid hormone concentrations caused by central effects and by changes in peripheral hormone metabolism and thyroid hormone binding proteins. Geriatric cats form an animal model of disease because both hyperthyroidism and chronic kidney disease (CKD) have high prevalence among them, and the link between thyroid and kidney affects the evaluation of clinical wellbeing and the possible treatment options.